Welcome to the International Potato Center (CIP) Branding and Style Guide. Here you will find information to help you properly apply elements of the International Potato Center brand. By following these standards, you can ensure the clarity and strength of the International Potato Center brand throughout all communications. These guidelines should be used in conjunction with any other partner organizations and their branding guidelines.

CIP is a more than 50 year-old organization that has pioneered major advances in agriculture research for development. It is a CGIAR Research Center. Unified branding throughout CIP will help elevate the name of the organization to the level it deserves. This is as an overarching global brand that expresses our shared vision and enables us to be seen as more than the sum of our parts.
The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweetpotato and Andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems.

Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America. www.cipotato.org

CIP is a CGIAR research center, a global research partnership for a food-secure future. CGIAR science is dedicated to transforming food, land and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org
Our Vision
A healthy, inclusive and resilient world through root and tuber systems.

Our Mission
CIP delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive climate resilience of root and tuber agri-food systems.
The CIP official logo is in English. It includes a graphic design depicting the importance of root and tuber crops.

The base color of the logo is orange and brown, to represent potato and sweetpotato.

The logo for the International Potato Center is comprised of the following elements:

- **The Symbol**: A square with corner elements, containing the figure of the potato guardian Papa Arariwa, holding both a potato and a sweetpotato.
- **The Logotype**: is the text International Potato Center and the Spanish acronym CIP
- **The Tagline**: A CGIAR Research Center

![Logo variant](image-url)
Logo guidelines in use
The official logo must always appear in full color.

The black logo can be used when necessary.

The logo can be used in white on top of any color.

If you need advice or assistance on logo use, please contact the Communications Department CIP-CPAD@cgiar.org
Minimum clear space

To maximize the impact of the logo there must always be a minimum amount of clear space surrounding the logo. This clear space protects the image from being obscured by nearby text or pictures. The minimum clear space required is the ‘C’ in International Potato Center.

Minimum print size

A minimum print size has been established to ensure legibility.

Minimum height = 1.7 cm
Minimum width = 4 cm

Example: used for business cards.
Typography

CIP logo type

CIP has typography standards to ensure brand consistency across all printed materials. Typography is an extremely important design element not to be overlooked. The font family, Square and Myriad Pro, have been established as the CIP logo standard.

Primary font for print

As a general rule, Square and Myriad Pro should be used for headlines. For subheads and body text Myriad Pro is recommended. If the Myriad Pro font family is not available Arial is an acceptable and commonly available substitute.

Square BT

<table>
<thead>
<tr>
<th>Font Style</th>
<th>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square BT Roman</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Square BT Bold</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
</tbody>
</table>

Myriad Pro

<table>
<thead>
<tr>
<th>Font Style</th>
<th>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myriad Pro Light Condensed</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Condensed</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Semibold Condensed</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Bold Condensed</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Black Condensed</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Light</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Regular</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Semibold</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Bold</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
<tr>
<td>Myriad Pro Black</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789</td>
</tr>
</tbody>
</table>
Color palette

The CIP logo should be reproduced in full color. These colors serve as the source for our standard color palette. These colors should be employed throughout CIP communications and are equivalent to the PANTONE® numbers listed in the table below.

For **four-color process** printing refer to the CMYK values shown.

For **desktop publishing**, such as Word or PowerPoint®, refer to RGB (print/on-screen).

For **web applications**, refer to Hexadecimal Web values.

Primary color palette

<table>
<thead>
<tr>
<th>PANTONE: 1505 C</th>
<th>PANTONE: 1545 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:00</td>
<td>M:65</td>
</tr>
<tr>
<td>R:238</td>
<td>G:114</td>
</tr>
<tr>
<td>HEX: #EE7203</td>
<td>HEX: #5D2E00</td>
</tr>
</tbody>
</table>

![Color swatches and percentages]
Secondary color palette

Used for publications and other applications

PANTONE: 364 C
- C:73 | M:09 | Y:94 | K:39
- R:52 | G:117 | B:45
- HEX: #34752D

PANTONE: 1795 C
- C:00 | M:90 | Y:100 | K:00
- R:230 | G:51 | B:18
- HEX: #E53212

PANTONE: 2607 C
- C:80 | M:100 | Y:100 | K:10
- R:86 | G:33 | B:122
- HEX: #56217A

PANTONE: 354 C
- C:80 | M:00 | Y:100 | K:00
- R:19 | G:165 | B:56
- HEX: #12A537

PANTONE: 1665 C
- C:00 | M:75 | Y:100 | K:00
- R:234 | G:91 | B:12
- HEX: #EA5A0B

PANTONE: 192 C
- C:00 | M:100 | Y:70 | K:00
- R:228 | G:00 | B:58
- HEX: #E4003A

PANTONE: 369 C
- C:60 | M:00 | Y:100 | K:00
- R:118 | G:184 | B:42
- HEX: #76B82A

PANTONE: 152 C
- C:00 | M:50 | Y:100 | K:00
- R:230 | G:146 | B:00
- HEX: #F39200

PANTONE: Pro. Mag. C
- C:00 | M:100 | Y:00 | K:00
- R:230 | G:00 | B:126
- HEX: #E6007E

PANTONE: 376 C
- C:40 | M:00 | Y:100 | K:00
- R:175 | G:202 | B:11
- HEX: #AFCA0A

PANTONE: 137 C
- C:00 | M:30 | Y:100 | K:00
- R:251 | G:186 | B:00
- HEX: #FBAA00

PANTONE: Pro. Cyan C
- C:100 | M:00 | Y:00 | K:00
- R:00 | G:159 | B:227
- HEX: #009FE3
Modular grid

The modular grid should be divided horizontally into seven rows and vertically into six columns further subdivided in three main columns.
Correct Logo placement
The CIP logo must be placed in the upper center, in a white, orange or brown field. It may also be placed in 10% of any color.
Applications:

Stationery

Letterhead

Business card

Envelope

Lima, 24 de Diciembre de 2016

Sr. [Nombre del destinatario]
Aplicación: [Nombre de la aplicación]

[Continuar con la aplicación]

Lima, 24 de Diciembre de 2016

Sr. [Nombre del destinatario]
Aplicación: [Nombre de la aplicación]

[Continuar con la aplicación]

Lima, 24 de Diciembre de 2016

Sr. [Nombre del destinatario]
Aplicación: [Nombre de la aplicación]

[Continuar con la aplicación]

Lima, 24 de Diciembre de 2016

Sr. [Nombre del destinatario]
Aplicación: [Nombre de la aplicación]

[Continuar con la aplicación]
Posters

CIP Poster (36x48 inches)

Respuesta de tres variedades de papa en un sistema Aeropónico novedoso para la producción

Carlos Chuquillanqui1 • Ian Barker4
1 International Potato Center (CIP), Qeswachaca
2 Peru

Background

WRKY proteins are a superfamily of transcription factors involved in various phytopathological processes in plants, including pathogen defense. WRKY transcription factors have been shown to act as both negative and positive regulators of defense, suggesting that they may operate through different regulatory complexes. The different roles can be partly determined by the nucleotide features of the proteins. This WRKY domain is defined by the conserved amino acid sequence WXRxLXXL at the N-terminal end followed by a zinc-finger-like motif. WRKY proteins are classified based on the number of WRKY domains and the structure of the zinc-finger-like motif.

The data presented here is the first step towards unraveling the role of WRKY transcription factors in regulating pathogen defense responses in CIP's potato germplasm.

Figure 1. Evolutionary relationships of WRKY proteins.

Methods

WRKY Plant profile PF03106 consisting of the alignment of 38 WRKY type sequences was used to mine the POOSy database with HMMER algorithm and 15% sequences were obtained. After alignment the proteins lacking either the WRKY motif or part of the zinc finger motif were removed. WRKY domains (25 amino acids) of 96 proteins were subjected to phylogenetic analysis by MEGA4 and NJ consensus trees were composed (Figure 1). Potential positive zippers, leucine repeats and coiled-coil domains were predicted in full length WRKY proteins using ZIP server at http://zip.molgen.mpg.de/.

Potato WRKY protein

Phylogeny

The groups previously classified in Arabidopsis [1] were identified: Group 1 proteins contain 2 WRKY domains and based on the C-terminal WRKY domain alone do not form a clearly supported group in phylogenetic trees. Group 2 proteins cluster together with group 2a proteins. However, these groups can be differentiated on the N-terminal region of the protein before the WRKY domain. Only group 2a proteins were found to contain a predicted leucine zipper (LZ) whereas none of the group 2b proteins contain a coiled-coil (CC) domain.

Groups 2d and 2e each form well supported phylogenetic groups. Group 4 is new as compared to Arabidopsis and is clearly distinguished by a different type of zinc finger motif with the C-X4-C motif typical to Group 2 but with a H-X-C motif typical to Group 3.

Transcript profiles

For 77 of the WRKY proteins transcripts were detected among the RNA sequencing libraries. Most of the transcripts had a low abundance suggesting low level of expression, but there are also transcripts that accumulate in large amounts in certain tissues or after biotic or abiotic stimuli. Expression in CM is determined by FFPM (fragments Per Kilobase of exon per Million fragments mapped values) (P2D).

Groups 2d and 2e each form well supported phylogenetic groups. Group 4 is new as compared to Arabidopsis and is clearly distinguished by a different type of zinc finger motif with the C-X4-C motif typical to Group 2 but with a H-X-C motif typical to Group 3.

For 77 of the WRKY proteins transcripts were detected among the RNA sequence libraries. Most of the transcripts had a low abundance suggesting low level of expression, but there are also transcripts that accumulate in large amounts in certain tissues or after biotic or abiotic stimuli. Expression in CM is determined by FFPM (fragments Per Kilobase of exon per Million fragments mapped values) (P2D).
Respuesta de tres variedades de papa en un sistema Aeropónico novedoso para la producción

Background

WRKY proteins are a superfamily of transcription factors involved in various physiological processes in plants, including pathogen defense. WRKY transcription factors have been shown to act both negative and positive regulators of defense, suggesting that they may operate through different regulatory complexes. The different roles can be partly determined by the topological features of the proteins.

The WRKY domain is defined by the conserved amino acid sequence WRKY20 at the N-terminal and followed by a conserved zinc-finger-like motif. WRKY proteins are classified based on the number of WRKY domains and the structure of the zinc-finger-like motif.

The data presented here is the first step towards unveiling the role of WRKY transcription factors in regulating pathogen defense responses in CIP, potato germplasm.

Methods

WRKY Pfam profile PF01690 consisting of the alignment of 58 WRKY type sequences was used to mine the POSSO DM peptides with HMNR algorithm and 15% sequences were obtained. After alignment the protein lacking either the WRKY motif or part of the zinc finger motif were subjected to phylogenetic analysis by MEGAH and NJ consensus tree was computed (Figure 1). Potential source zippers, lines and colored codon domains were predicted in full length WRKY proteins using ZEP server at http://zep.mogen.rug.nl/.

Potato WRKY protein Phylogeny

The groups previously classified in Arabidopsis [1] were identified. Group 1 contains 2 WRKY domains and based on the C-terminal WRKY domain alone do not form a clearly supported group in phylogenetic tree. Part of the group 2b proteins cluster together with group 3a proteins. However, these groups can be differentiated on the N-terminal region of the protein before the WRKY domain. Only group 2a proteins were found to contain a predicted leucine zipper (LZ) whereas some of the group 2b proteins contain a ciliated (CC) domain.

Groups 2d and 2e each form well supported phylogenetic groups. Group 4 is new as compared to Arabidopsis and is clearly distinguished by a different type of zinc finger motif with the C-X4-C motif typical for group 3. Groups 2d and 2e each form well supported phylogenetic groups. Group 4 is new as compared to Arabidopsis and is clearly distinguished by a different type of zinc finger motif with the C-X4-C motif typical for group 3.
Power point presentations (on screen-show)

Genetic Resources Conservation and Report Characterization Division

AUGUST 15, 2016

C I P P R O G R A M C O M M I T T E E

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweetpotato and andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America.

www.cipotato.org

CIP is a CGIAR research center, a global research partnership for a food-secure future. CGIAR science is dedicated to transforming food, land and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector.

www.cgiar.org
Power point presentations

Genetic Resources Conservation and Report Characterization Division

AUGUST 15, 2016

CIP PROGRAM COMMITTEE

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweetpotato and Andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America. www.cipotato.org

CIP is a CGIAR research center, a global research partnership for a food-secure future. CGIAR science is dedicated to transforming food, land and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org
Name tags

James Stapleton (CIP)
Publications

Cover

All publications—including reports, studies, papers etc. must follow these branding standards. The CIP logo always appears in the upper center in a white field. Other logos must be placed at the bottom of the cover.
Back Cover

The CIP Mission and Vision must always appear on the backcover along with the CIP and CGIAR logos.
Social media

FaceBook

![Facebook Image]

Twitter

![Twitter Image]
Other applications in social media

Potato is the third most important food crop after rice and wheat.