Cultivated Sweetpotato Germplasm Collection
Sweetpotato is the seventh most important food crop, in terms of production, in the world. Sweetpotato is grown mainly in developing countries with 80% of the world’s production coming from Asia, about 15% in Africa, and only 5% from the rest of the world. Sweetpotatoes rank as one of the healthiest vegetables, because of high levels of Vitamins A and C, iron, potassium, and fiber and contains thiamin (B1), riboflavin (B2) and pantothenic acid. Beta carotene is the most abundant pigment (provitamin A) in orange flesh sweetpotato varieties which is important in countries where they were introduced to combat vitamin A deficiency in children (CIP scientist won the world food prize for their work with orange flesh sweetpotato). Purple fleshed sweetpotatoes are a rich source of anthocyanins, which have medicinal value as anti-oxidants and cancer preventing agents.
The International Potato Center (CIP) maintains one of the world’s largest cultivated sweetpotato genebanks with over 5000 accessions maintained in vitro. The overall objective is to conserve the diversity in the collection and make it available to the global community for research, breeding, and training.
Almost the entire cultivated collection (5909 accessions, 97%) was genotyped by high density Diversity Arrays Technologies sequencing (HD-DArTseq). The genetic identity of 90% of the in vitro conserved sweetpotato collection has been verified by morphological characterization using 27 standard descriptors for sweetpotatoes (CIP, AVRDC, IBPGR. 1991), and a set of 20 SSR primers.
Geographic distribution of Ipomoea Batatas
Geographic distribution by continent
Morphological characterization of sweetpotato
The morphological characterization is done using 30 standard descriptors for sweetpotatoes (CIP, AVRDC, IBPGR. 1991.) in the field of the San Ramón station in the department of Junín at 800 meters above sea level.
Thirty standard sweetpotato descriptors
1. Twinning 2. Plant type 3. Ground cover 4. Vine internode diameter 5. Vine internode length 6. Vine pigmentation-Predominant vine color 7. Vine pigmentation-Secondary vine color 8. Vine pubescens 9. General outline of the leaf 10. Leaf lobes type |
11. Leaf lobe number 12. Shape of central leaf lobe 13. Leaf size 14. Leaf vein 15. Foliage color-Mature leaf color 16. Foliage color-Inmature leaf color 17. Petiole pigmentation 18. Petiol length 19. Storage root shape 20. Storage root surface defects |
21. Thickness of cortex 22. Skin color 1 Predominant color 23. Skin color 2 Intensity of predominant color 24. Skin color 3 Secondary skin color 25. Flesh color 1 Predominant color 26. Flesh color 2 Secondary flesh color 27. Flesh color 3 Distribution of secondary flesh color 28. Storage root formation 29. Latex production in storage roots 30. Oxidation in storage roots |
Molecular characterization of sweetpotato
The genetic diversity maintained in the genebank is well characterized enabling better use and targeted selection and use of material by breeders, molecular biologists, taxonomists, and other germplasm users.
Currently a highly informative and user-friendly set of 20 SSR primers, which covers most of the sweetpotato genome, has been selected and is used to fingerprint accessions, assess diversity and aid in phylogenetic studies.
These SSR fingerprints provide a molecular ID for the accessions for in house quality management as well as for scientific investigations. One example of their use in genebank management has been the confirmation of identity of the in vitro collection by comparison of SSR fingerprints with material maintained from the originally collected samples.
Molecular fingerprint of sweetpotato using SSRs. The band pattern corresponds to SSR locus IBS11.
Important subsets available for distribution
Go to Search and order tool to order these items.
Collaboration with La Buena Esperanza school
Combat malnutrition and childhood anemia through consumption of sweetpotato.